• Science designed bike pedals delivering speed and comfort. 100% money back guarantee if not satisfied.

    Be the first 100 cyclists! Pre order here
Be the first 100 cyclists! Pre order here

Science designed bike pedals delivering speed and comfort. 100% money back guarantee if not satisfied.

Lateral motion technology

The lateral motion is created by the pedal moving smoothly and naturally side to side. The Zivo® technology effectively guides your leg muscles while providing comfort to your joints. The lateral motion is calculated and designed to align with the natural motion of your legs.  No learning curve, no special bike needed, just pedal, and feel the comfort.  No more pain and faster than before!

Learn more on the clinical studies conducted on the pedals on our resource page

Bike pedals made for speed and comfort


The new generation of Nikola pedals is here. Nikola Innovation’s patented Zivo™ technology combines the movements of a skater and cyclist into one smooth motion that provides new efficiency, comfort, and power for the cyclist - a great bike pedal for bad knees. Get the pedal performance, comfort and efficiency you need. Available in chromoly and titanium.


COMING SOON July 2022- Dr. Nick's Platform Bike Pedals!

Shop Now


Bike riders

The beginning.

The idea was born while I was rollerblading in the Cleveland Metroparks.  I was also an avid cyclist entering into local races and bike events. I would ride during the week and rollerblade with friends on the weekend. I noticed something different about my legs after each ride and after rollerblading. The soreness associated with each activity was different. When rollerblading, my calf muscles, inner thighs, and glutes were sore from use. After biking, my quads and calf muscles were sore. Hmmm…that’s weird.


The hypothesis.

This soreness and leg motion began my interest in understanding body
mechanics and how to fully utilize my lower body muscles when riding a bike. As an avid cyclist who loved to ride and compete, I wanted to find a better way to apply and transfer the power of my body into the bike. Realizing the similarities between skating and cycling began the theory for the idea. The hypothesis was if a person can use a broader range of muscles to propel a bike,
then they should realize higher perforamance or need less effort to ride with the added muscles. Think of a car that has run out of out of gas and you need to push it. One person will be challenged; it’s much easier with two people; and even easier with three. More people pushing the car requires less effort
from each.

The development.

While not a classically trained engineer, I’m a self-declared street engineer. I was the kid who would take apart watches, clocks, and bikes just to see how
they work. My father was also incredibly resourceful and self-taught in many fields like electrical, plumbing, carpentry, and a variety of others which I embraced.

The vision of this new motion on the bike was derived from using twisty ties from bread loaves. Twisting and turning these twisty ties in many different direction was the first step in development. Once I landed on what I thought was the new
motion, figuring out how to make it happen was next.

Prototype # 1.

During the design spec meeting, it was pointed out that the prototype pedal would go under a significant amount of testing so let’s make it durable. The next question I had was how much will the first prototype cost, and how much for a
second set in case we break the first ones during testing?  The answer was, “the first prototype will be about $3000, and the second prototype will be about $3000”. Keep in mind this was way before 3D printing was as good as it is today. We had to machine the first bike pedals set and built them to a beefy 1.6 lbs. each or 3.2 lbs. for the pair to save on spending another $3k!

Proof needed.

The first prototypes were an absolute blast to ride. I could hardly contain myself riding the pedals and seeing the motion. It was truly amazing to see them in action. During the course of next three months and almost daily test rides, I came to realize that I have no idea how to prove this is working. We need data! Finding an institution that tests bike components was not a simple feat, so I began researching how to conduct research. As luck would have it, I started talking with a Cleveland based product development company who had previously worked with a Human Performance Lab associated with Cleveland State University. Ken Sparks PhD heads the lab there and gave us the preliminary validation and proof that the pedals do provide greater power. We have spent a total of six years in clinical studies capturing data and answering questions on the Nikola pedal benefits. I knew that having this data will be the foundation of our company and tenet on developing all our new products.

Onward Journey

If you wish to continue to follow us on our journey, then please sign up for
our newsletter here and we’ll keep you updated.

Video of first lab test can be found here!

New bike pedals technology for comfort and performance

The first group to embrace our pedals is triathletes – from elite level riders to new triathlon athletes looking for an advantage. One common thread between all riders is the benefits felt reducing knee, hip, or ankle pain associated with riding. The pedal allows the hip to rotate beyond a standard pedal relieving pressure off of leg joints creating a noticeable difference for many riders. Cyclists with FAI (Femoroacetabular Impingement) are using the pedal post surgery and in therapy using the lateral motion to their advantage.

Performance improvements were seen to benefit male riders more than females. The average improvement for peak power was 7% and efficiency was about 2% and almost 70% of the men improved. The good news is the pressure relief from joints and IT bands was felt by both women and men and appreciated by most riders so there is a comfort benefit regardless of gender. Hip angle plays a part in the male/female differences and research will continue to determine optimizing performance for both genders.



Nikola is made up of a crew of engineers devoted to creating the pedal system. No person on the team is a medical physician or physical therapist so we had to choose the right people who study biomechanics, and kinematics, and human performance to do the testing. We wish to thank the following institutions that developed clinical studies through the IRB process and led countless test spanning five years and over 100 volunteers and patients testing the pedals: Cleveland State University, Alleghany General Hospital, the University of Pittsburgh, Carnegie Mellon University, and Gonzaga University. Tests were designed and conducted by an Orthopedic Surgeon, Professor of Biomechanics and Physics, and world-class athletes validated the hypothesis as true.

The performance tests were conducted over two separate visits for each participant. Each person used road standard pedals one day and lateral pedals another day. This was randomized and undisclosed to each so that they would not know which pedal they were riding first. As many variables were controlled as possible keeping seat height, crank arm length, bike set up, and equipment the same for both tests for each cyclist. Speed, cadence, and even time of day of the tests were kept identical for each participant, maintaining the focus on the pedal performance. Motion studies were conducted to measure leg flexion and extension at the hip, knee, and ankle using EMG systems focusing on patients with FAI.

Spin to win Spinner icon